Millet production in ten Sub-Saharan African countries Millet production in ten Sub-Saharan African countries

Countries: Mali, Burkina Faso, Ghana, Niger, Nigeria, Ethiopia, Kenya, Uganda, Tanzania and Zambia

Introduction

Africa is home to important centers of origin, diversity and cultivation of millets. Annually, millet is grown over an area of 19.5 Mha  producing 13.6 Mton in Africa (the average for the period from 2015 to 2020; FAOSTAT). Pearl millet is a climate hardy crop which is grown in harsh conditions, but as a subsistence crop. Harvested from an area of 19.5 Mha in the semi-arid regions of Africa pearl millet contributes 17% area to cereal production. In Sub-Saharan Africa, millet biodiversity constitutes both a unique ecological heritage and a critical food security component among millions of small-scale farmers. Around 68 percent of all millet lands in Africa is in the ten Sub-Saharan countries (Table 1).

 

Table 1. Annual millet harvest area in sub-Saharan Africa

Country

Annual millet harvest area

(1000 ha)*

Percentage of total

 millet lands in Africa

Burkina Faso

1221

6.3

Ethiopia

460

2.4

Ghana

170

0.9

Kenya

114

0.6

Mali

2075

10.6

Niger

6877

35.2

Nigeria

1855

9.5

Uganda

140

0.7

Tanzania

298

1.5

Zambia

44

0.2

Total

13254

67.9

* The data are from FAOSTAT for the period from 2015 to 2020

 

 

 

The crop model

The Python Crop Simulation Environment of WOFOST (WOrld FOod STudies) was used for the implementation (https://pcse.readthedocs.io/en/stable/). This model takes into account phenological development, leaf development, light interception, CO2 assimilation, root growth, transpiration, respiration and partitioning of assimilates (de Wit et al., 2019). Daily weather data, crop parameters, soil parameters, and management data are needed to run the model and simulate water-limited potential yield (Yw). The source of different data to do the simulations for each country were presented in Table 2.

Table 2.  Sources of data to simulate rainfed millet potential yield and for calculating the yield gap. Note: GYGA CA = GYGA country agronomist

Country

Sowing window

Daily weather data

Cultivar thermal time requirment**

Soil data

Actual yield

Burkina Faso

GYGA CA

Propagated data*

calculated

AFSIS***

National Statistical database

Ethiopia

GYGA CA

Measured and Propagated data

calculated

AFSIS

GYGA CA

Ghana

GYGA CA

Measured and Propagated data

calculated

AFSIS

GYGA CA

Kenya

GYGA CA

Propagated data

calculated

AFSIS

FAO

Mali

GYGA CA

Propagated data

calculated

AFSIS

FAO

Niger

GYGA CA

Measured and Propagated data

calculated

AFSIS

GYGA CA

Nigeria

GYGA CA

Measured and Propagated data

calculated

AFSIS

GYGA CA

Tanzania

GYGA CA

Propagated data

calculated

AFSIS

GYGA CA

Uganda

GYGA CA

Propagated data

calculated

AFSIS

FAO

Zambia

GYGA CA

Measured and Propagated data

calculated

AFSIS

GYGA CA

* Details are in Van Wart et al. (2015)

** Calculated based on the sowing, flowering and maturity timing information from the GYGA country agronomist using weather data and cardinal temperatures

*** AFrica Soil Information Service (Leenaars J.G.B., 2018)

 

Reference weather stations

The simulation was performed for 81 weather stations in the ten countries (Table 3). These were identified as reference weather stations for millet in SSA countries based on the GYGA protocol (https://www.yieldgap.org/web/guest/methods-overview). SPAM (Spatial Production Allocation Model; https://www.mapspam.info/) maps, together with expert knowledge from agronomists and experts from these countries, were used to identify the millet harvested area  (You et al., 2009, 2014). Following van Bussel et al (2015), a total of 81 buffer zones were selected for rainfed millet in SSA countries (Table 3, Fig. 1)

 

Figure 1. The location of the reference weather stations for rainfed millet in Sub-Saharan African countries

 

Weather data

Weather data used in simulation included daily solar radiation, maximum and minimum temperatures, precipitation, vapor pressure deficit, and wind speed. Weather data for selected weather stations were subjected to quality control measures to fill in missing data and identify and correct erroneous values. In the case of those stations with only few years of weather data (Table 3), long-term weather data were generated based on correlations between measured weather data and NASA-POWER maximum and minimum temperatures (Van Wart et al., 2015). In the case of solar radiation and rainfall, the data from NASA-POWER were used without any correction (NASA, 2022). In the case of buffers without measure weather data at all, named the virtual stations (Table 3), uncorrected NASA-POWER data were used for all meteorological variables needed for crop modeling.

 

Soil information

Soil data was obtained from the AFSIS[1] (Leenaars J.G.B., 2018). Soil moisture content at field capacity, soil moisture content at wilting point, not infiltrating fraction of rainfall, initial soil water, and maximum rootable depth of the soil were obtained as soil parameters for each weather station.

Management data

The simulations were done under water-limited conditions with no limitation for nutrients. So, the sowing date within the buffers of the weather stations was the main management input data needed to run the model. For this purpose, the common sowing windows of millet for each buffer were retrieved through agronomists from the countries (Fig. 2). These sowing windows and an algorithm were used to estimate the sowing date for each year for each weather station. The algorithm calculates the amount of cumulative rainfall for seven consecutive days into the sowing window. The last day of this period resulting in more than 20 millimeter cumulative rainfall was considered as the sowing date. If there was no consecutive seven days with at least 20 millimeter rainfall into the sowing window, the last day of the sowing window was as the sowing date.

Crop parameters

The crop parameters consist of parameter names and the corresponding parameter values that are needed to parameterize the components of the crop simulation model. These are crop-specific values regarding phenology, assimilation, respiration, biomass partitioning, etc. The same crop parameters were used for the simulations in all the weather stations except the parameters for phenology. The phenological parameters including the thermal time requirement from emergence to flowering and from flowering to harvesting were calculated based on the observed data for sowing, emergence, flowering and harvesting using the cardinal temperature and weather data at each weather station (Table 3).

 

Figure 2. The sowing window to plant rainfed millet at the weather stations in Sub-Saharan Africa countries; The name and information of each station are presented in Table 3.

Table 3. Rainfed millet cropping system and management information and the thermal time requirement of the cultivars at each weather station

                  Sowing window Thermal time requirement**
Country Station name Station ID* Longitude Latitude Elev Water regime Cropping system Cropcycle Start End From emergence to flowering From flowering to maturity
Mali Dagdag 2000001 -11.4 14.48 47 Rainfed Single: millet 1 01-Jul 31-Jul 900 650
Mali Hombori 2000002 -1.68 15.33 288 Rainfed Single: millet 1 01-Jul 31-Jul 850 680
Mali Koutiala 2000003 -5.47 12.38 367 Rainfed Single: millet 1 10-Jun 10-Jul 850 660
Mali Mopti 2000004 -4.1 14.52 272 Rainfed Single: millet 1 01-Jul 31-Jul 850 680
Mali Niono 2000006 -5.98 14.23 277 Rainfed Single: millet 1 01-Jul 31-Jul 850 680
Mali Segou 2000008 -6.15 13.4 289 Rainfed Single: millet 1 10-Jun 10-Jul 850 660
Mali Senou 2000009 -7.95 12.53 381 Rainfed Single: millet 1 10-Jun 10-Jul 850 630
Mali Sikasso 2000010 -5.68 11.35 375 Rainfed Single: millet 1 15-May 30-Jun 850 630
Niger Maradi 3000011 7.08 13.47 373 Rainfed Single: millet 1 01-Jun 15-Jul 850 500
Niger Niamey 3000012 2.17 13.48 227 Rainfed Single: millet 1 01-Jul 30-Jul 900 470
Niger Zinder 3000015 8.98 13.78 453 Rainfed Single: millet 1 01-Jun 30-Jul 790 470
Niger Diffa 3000017 12.78 13.42 305 Rainfed Single: millet 1 01-Jul 30-Jul 680 500
Burkina Faso Bobodioulasso 4000000 -4.32 11.17 445 Rainfed Single: millet 1 15-Jun 20-Jul 870 760
Burkina Faso Bogande 4000001 -0.14 12.97 281 Rainfed Single: millet 1 01-Jul 31-Jul 840 600
Burkina Faso Boromo 4000002 -2.93 11.75 243 Rainfed Single: millet 1 15-Jun 20-Jul 920 800
Burkina Faso Dedougou 4000003 -3.48 12.47 299 Rainfed Single: millet 1 01-Jul 31-Jul 920 800
Burkina Faso Fadangourma 4000004 0.37 12.03 294 Rainfed Single: millet 1 01-Jul 31-Jul 840 600
Burkina Faso Gaoua 4000005 -3.18 10.33 339 Rainfed Single: millet 1 15-Jun 20-Jul 870 760
Burkina Faso Ouahigouya 4000007 -2.42 13.57 315 Rainfed Single: millet 1 01-Jul 31-Jul 840 600
Burkina Faso Po 4000008 -1.15 11.15 322 Rainfed Single: millet 1 15-Jun 31-Jul 920 800
Burkina Faso Dori 4000009 -0.03 14.03 282 Rainfed Single: millet 1 01-Jul 31-Jul 840 600
Burkina Faso bur_rfmt1 4000101 -1.73 14.02 307 Rainfed Single: millet 1 01-Jul 31-Jul 840 600
Ethiopia Adet 5000000 37.48 11.27 2240 Rainfed Single: millet 1 15-May 30-Jun 650 620
Ethiopia Assosa 5000006 34.52 10.07 1419 Rainfed Single: millet 1 01-Jun 30-Jun 790 790
Ethiopia Ayira 5000007 35.33 9.06 1700 Rainfed Single: millet 1 15-May 30-Jun 750 670
Ethiopia Bahirdar 5000008 37.38 11.58 1790 Rainfed Single: millet 1 10-May 15-Jun 620 430
Ethiopia Gelemso 5000016 40.53 8.81 1810 Rainfed Single: millet 1 01-Apr 30-Apr 800 750
Ethiopia Gondar 5000017 37.47 12.59 2052 Rainfed Single: millet 1 15-May 25-Jun 600 430
Ethiopia Gore 5000018 35.53 8.02 1880 Rainfed Single: millet 1 01-May 31-May 600 460
Ethiopia Kobo 5000023 39.63 12.15 1500 Rainfed Single: millet 1 16-Jun 15-Jul 790 670
Ethiopia Melkassa 5000027 39.33 8.4 1550 Rainfed Single: millet 1 01-Apr 30-Apr 730 620
Ethiopia Nekemte 5000029 36.54 9.09 2110 Rainfed Single: millet 1 15-May 15-Jun 580 500
Ethiopia Pawe 5000030 36.4 11.31 1100 Rainfed Single: millet 1 01-Jun 10-Jul 970 1000
Ethiopia Shambu 5000031 37.12 9.57 2367 Rainfed Single: millet 1 01-May 31-May 500 400
Ethiopia Shireendasilasse 5000033 38.33 14.1 1920 Rainfed Single: millet 1 16-Jun 15-Jul 650 660
Nigeria Bida 6000004 6.02 9.1 143 Rainfed Single: millet 1 01-Jun 30-Jun 750 500
Nigeria Kaduna 6000005 7.45 10.6 642 Rainfed Single: millet 1 15-May 15-Jun 700 450
Nigeria Bauchi 6000016 9.82 10.28 609 Rainfed Single: millet 1 15-Jun 15-Jul 700 500
Nigeria Gusau 6000021 6.7 12.17 469 Rainfed Single: millet 1 15-Jun 15-Jul 720 480
Nigeria Kano 6000025 8.53 12.05 481 Rainfed Single: millet 1 15-Jun 15-Jul 700 450
Nigeria Katsina 6000026 7.62 13.02 427 Rainfed Single: millet 1 15-Jun 15-Jul 720 490
Nigeria Maidu 6000028 13.08 11.85 354 Rainfed Single: millet 1 01-Jul 31-Jul 720 470
Nigeria Nguru 6000032 10.47 12.88 344 Rainfed Single: millet 1 01-Jul 31-Jul 720 470
Nigeria Sokoto 6000037 5.25 13.02 302 Rainfed Single: millet 1 01-Jul 31-Jul 770 500
Nigeria Yelwa 6000040 4.75 10.88 243 Rainfed Single: millet 1 01-Jun 30-Jun 740 510
Nigeria nig_rfmt3 6000103 10.38 12.03 369 Rainfed Single: millet 1 01-Jul 31-Jul 720 490
Ghana Bolgatanga 7000000 -0.87 10.8 180 Rainfed Single: late millet 1 01-Jun 30-Jun 1070 950
Ghana Bolgatanga 7000000 -0.87 10.8 180 Rainfed Single: early millet 1 15-May 31-May 740 660
Ghana Wa 7000006 -2.5 10.07 323 Rainfed Single: millet 1 15-May 30-Jun 1070 950
Ghana Yendi 7000007 0 9.43 197 Rainfed Single: millet 1 15-Jun 15-Jul 1070 950
Kenya Dagoretti 9000000 36.45 -1.24 1436 Rainfed Single: millet 1 01-Apr 30-Apr 520 360
Kenya Embu 9000001 37.58 -0.49 1350 Rainfed Single: millet 1 01-Feb 28-Feb 850 630
Kenya Kakamega 9000003 34.46 0.17 1399 Rainfed Single: millet 1 01-Apr 30-Apr 690 530
Kenya Kericho 9000005 35.16 -0.22 1356 Rainfed Single: millet 1 01-Apr 30-Apr 730 730
Kenya Kisii 9000006 34.79 -0.68 1734 Rainfed Single: millet 1 01-Apr 30-Apr 950 730
Kenya Kisumu 9000007 34.73 -0.07 1146 Rainfed Single: millet 1 01-Apr 30-Apr 900 700
Kenya Kitale 9000008 34.96 0.97 1850 Rainfed Single: millet 1 01-Apr 30-Apr 900 700
Kenya Nakuru 9000012 36.6 -0.16 2557 Rainfed Single: millet 1 15-Feb 15-Mar 800 700
Kenya Eldoret 9000015 35.3 0.48 2120 Rainfed Single: millet 1 01-Apr 30-Apr 650 600
Uganda Bulindi 10000002 31.44 1.48 1209 Rainfed Millet- beans 1 15-Mar 15-Apr 600 400
Uganda Bulindi 10000002 31.44 1.48 1209 Rainfed Millet- beans 2 15-Aug 15-Sep 600 400
Uganda Gulu 10000004 32.28 2.78 1105 Rainfed Millet-pigeon peas 1 15-Apr 15-May 750 530
Uganda Gulu 10000004 32.28 2.78 1105 Rainfed Millet-pigeon peas 2 01-Aug 31-Aug 720 570
Uganda Jinja 10000005 33.18 0.51 1173 Rainfed Millet-beans 1 15-Mar 15-Apr 690 460
Uganda Jinja 10000005 33.18 0.51 1173 Rainfed Millet-beans 2 01-Aug 31-Aug 690 460
Uganda Kitgum 10000010 32.89 3.28 953 Rainfed Millet-pigeon peas 1 15-Apr 15-May 770 580
Uganda Kitgum 10000010 32.89 3.28 953 Rainfed Millet-pigeon peas 2 01-Aug 31-Aug 750 610
Uganda Makerere 10000012 32.63 0.34 1240 Rainfed Millet-beans 1 15-Mar 15-Apr 680 460
Uganda Makerere 10000012 32.63 0.34 1240 Rainfed Millet-beans 2 01-Aug 31-Aug 680 460
Uganda Masindi 10000013 31.72 1.68 1147 Rainfed Millet-pigeon peas 1 15-Apr 15-May 700 500
Uganda Masindi 10000013 31.72 1.68 1147 Rainfed Millet-pigeon peas 2 01-Aug 31-Aug 750 500
Uganda Namulonge 10000015 32.62 0.53 1160 Rainfed Millet-beans 1 15-Apr 15-May 670 460
Uganda Namulonge 10000015 32.62 0.53 1160 Rainfed Millet-beans 2 01-Aug 31-Aug 680 460
Uganda Soroti 10000016 33.62 1.72 1123 Rainfed Millet-pigeon peas 1 15-Apr 15-May 750 560
Uganda Soroti 10000016 33.62 1.72 1123 Rainfed Millet-pigeon peas 2 01-Aug 31-Aug 730 580
Uganda Tororo 10000017 34.17 0.68 1171 Rainfed Millet-beans 1 15-Apr 15-May 710 500
Uganda Tororo 10000017 34.17 0.68 1171 Rainfed Millet-beans 2 01-Aug 31-Aug 700 520
Uganda uga_rfmt1 10000101 31.88 1.99 1007 Rainfed Millet-pigeon peas 1 15-Apr 15-May 760 510
Uganda uga_rfmt1 10000101 31.88 1.99 1007 Rainfed Millet-pigeon peas 2 01-Aug 31-Aug 710 540
Tanzania Dodoma 11000002 35.77 -6.17 1120 Rainfed Sorghum-millet 1 30-Nov 30-Dec 700 440
Tanzania Singida 11000010 34.73 -4.82 1524 Rainfed Single: millet 1 01-Dec 31-Dec 700 440
Tanzania tan_rfmt1 11000101 31.48 -3 1227 Rainfed Single: millet 1 01-Jan 30-Jan 700 440
Tanzania tan_rfmt2 11000102 36.36 -5.41 1367 Rainfed Single: millet 1 05-Jan 03-Feb 700 440
Tanzania tan_rfmt3 11000103 33.32 -3.49 1205 Rainfed Single: millet 1 05-Jan 03-Feb 700 440
Tanzania tan_rfmt4 11000104 34.27 -5.5 1296 Rainfed Single: millet 1 01-Jan 30-Jan 700 440
Tanzania tan_rfmt6 11000106 30.94 -5.86 1147 Rainfed Single: millet 1 01-Jan 30-Jan 700 440
Tanzania tan_rfmt7 11000107 34.81 -2.76 1598 Rainfed Single: millet 1 15-Jan 13-Feb 700 440
Zambia Choma 12000001 26.99 -16.81 1278 Rainfed Single: millet 1 15-Nov 15-Dec 700 570
Zambia Livingstone 12000005 25.87 -17.74 986 Rainfed Single: millet 1 10-Nov 15-Dec 900 700
Zambia Mongu 12000009 23.16 -15.25 1053 Rainfed Single: millet 1 15-Nov 15-Dec 880 690
Zambia Mpika 12000011 31.45 -11.84 1402 Rainfed Single: millet 1 15-Nov 15-Dec 700 570
Zambia Mumbwa 12000013 27.18 -15.07 1218 Rainfed Single: millet 1 15-Nov 15-Dec 700 580
* If the last three numbers of a station ID is more than or equal to 100, the station is as a virtual station
** The cardinal temperatures to calculate the thermal time for millet are 10◦C as the base temperature, 27◦C as the lower optimum temperature, 35◦C as the upper optimum temperature and 45◦C as the ceiling temperature.

 

Reference

de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., . . . van Diepen, K. (2019). 25 years of the WOFOST cropping systems model. Agricultural Systems, 168, 154-167. doi:10.1016/j.agsy.2018.06.018

https://pcse.readthedocs.io/en/stable. Accessed on 2022-06-10

https://www.fao.org/faostat/en/#data. Accessed on 2022-06-10

https://www.mapspam.info. Accessed on 2022-06-10

https://www.yieldgap.org/web/guest/methods-overview. Accessed on 2022-06-10

Leenaars, J.G., Claessens, L., Heuvelink, G.B., Hengl, T., González, M.R., van Bussel, L.G., Guilpart, N., Yang, H. and Cassman, K.G., 2018. Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa. Geoderma324, pp.18-36.

NASA. NASA-Agroclimatology methodology. Available at: https://power.larc.nasa.gov/data-access-viewer/. 2022. Accessed on April 10, 2022.

van Bussel LG, Grassini P, Van Wart J, Wolf J, Claessens L, Yang H, Boogaard H, de Groot H, Saito K, Cassman KG, van Ittersum MK. From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Research, 2015, 177: 98-108.

Van Wart, J., Grassini, P., Yang, H., Claessens, L., Jarvis, A. and Cassman, K.G., 2015. Creating long-term weather data from thin air for crop simulation modeling. Agricultural and Forest Meteorology209, pp.49-58.

You L, Wood S, Wood-Sichra U, Wu W. Generating global crop distribution maps: From census to grid. Agricultural Systems, 2014, 127: 53-60.

You L, Wood S, Wood-Sichra U. 2009. Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agricultural Systems, 99: 126-140.

 

[1] AFrica Soil Information Service

Go to the Atlas

Get access to the Atlas for advanced users

 

Download GYGA results

CC logo Please read the license information in case you are interested in using the data from the Global Yield Gap Atlas.
 
read more>>